FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for Resource and Data Heterogeneity

Author:

Li Guanghao1,Hu Yue1,Zhang Miao1,Liu Ji2,Yin Quanjun1,Peng Yong1,Dou Dejing2

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, China

2. Baidu research, China

Publisher

ACM

Reference34 articles.

1. FedMCCS: Multicriteria Client Selection Model for Optimal IoT Federated Learning

2. Durmus Alp Emre Acar , Yue Zhao , Ramon Matas Navarro , Matthew Mattina , Paul  N. Whatmough , and Venkatesh Saligrama . 2021 . Federated Learning Based on Dynamic Regularization. In 9th International Conference on Learning Representations, ICLR 2021 , Virtual Event, Austria , May 3-7, 2021. OpenReview.net. Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N. Whatmough, and Venkatesh Saligrama. 2021. Federated Learning Based on Dynamic Regularization. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

3. FedAT

4. Zheng Chai , Hannan Fayyaz , Zeshan Fayyaz , Ali Anwar , Yi Zhou , Nathalie Baracaldo , Heiko Ludwig , and Yue Cheng . 2019 . Towards taming the resource and data heterogeneity in federated learning . In USENIX Conference on Operational Machine Learning (OpML 19) . 19–21. Zheng Chai, Hannan Fayyaz, Zeshan Fayyaz, Ali Anwar, Yi Zhou, Nathalie Baracaldo, Heiko Ludwig, and Yue Cheng. 2019. Towards taming the resource and data heterogeneity in federated learning. In USENIX Conference on Operational Machine Learning (OpML 19). 19–21.

5. Asynchronous Online Federated Learning for Edge Devices with Non-IID Data

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ChronusFed: Reinforcement-Based Adaptive Partial Training for Heterogeneous Federated Learning;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Rethinking Personalized Federated Learning from Knowledge Perspective;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

3. A comprehensive survey of federated transfer learning: challenges, methods and applications;Frontiers of Computer Science;2024-07-23

4. hFedLAP: A Hybrid Federated Learning to Enhance Peer-to-Peer;Engineering, Technology & Applied Science Research;2024-06-01

5. FedDist-POIRec: Federated Distillation for Point-Of-Interest Recommendation in Human Mobility Prediction;2024 IEEE 4th International Conference on Human-Machine Systems (ICHMS);2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3