High-performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures

Author:

Ltaief Hatem1,Luszczek Piotr2,Dongarra Jack3

Affiliation:

1. KAUST Supercomputing Laboratory, Thuwal, Saudi Arabia

2. University of Tennessee, Knoxville, TN

3. University of Tennessee, Oak Ridge National Laboratory, and University of Manchester, Knoxville, TN

Abstract

This article presents a new high-performance bidiagonal reduction (BRD) for homogeneous multicore architectures. This article is an extension of the high-performance tridiagonal reduction implemented by the same authors [Luszczek et al., IPDPS 2011] to the BRD case. The BRD is the first step toward computing the singular value decomposition of a matrix, which is one of the most important algorithms in numerical linear algebra due to its broad impact in computational science. The high performance of the BRD described in this article comes from the combination of four important features: (1) tile algorithms with tile data layout, which provide an efficient data representation in main memory; (2) a two-stage reduction approach that allows to cast most of the computation during the first stage (reduction to band form) into calls to Level 3 BLAS and reduces the memory traffic during the second stage (reduction from band to bidiagonal form) by using high-performance kernels optimized for cache reuse; (3) a data dependence translation layer that maps the general algorithm with column-major data layout into the tile data layout; and (4) a dynamic runtime system that efficiently schedules the newly implemented kernels across the processing units and ensures that the data dependencies are not violated. A detailed analysis is provided to understand the critical impact of the tile size on the total execution time, which also corresponds to the matrix bandwidth size after the reduction of the first stage. The performance results show a significant improvement over currently established alternatives. The new high-performance BRD achieves up to a 30-fold speedup on a 16-core Intel Xeon machine with a 12000× 12000 matrix size against the state-of-the-art open source and commercial numerical software packages, namely LAPACK, compiled with optimized and multithreaded BLAS from MKL as well as Intel MKL version 10.2.

Funder

National Science Foundation

Microsoft Research

U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference42 articles.

1. Agullo E. Dongarra J. Nath R. and Tomov S. 2010. Autotuned dense QR factorization for multicore architectures. Tech. rep. RR-7526 Institut National de Recherche en Informatique et en Automatique (INRIA). arXiv:1102.5328. Agullo E. Dongarra J. Nath R. and Tomov S. 2010. Autotuned dense QR factorization for multicore architectures. Tech. rep. RR-7526 Institut National de Recherche en Informatique et en Automatique (INRIA). arXiv:1102.5328.

2. Comparative study of one-sided factorizations with multiple software packages on multi-core hardware

3. Anderson E. Bai Z. Bischof C. Blackford S. L. Demmel J. W. Dongarra J. J. Croz J. D. Greenbaum A. Hammarling S. Mckenney A. and Sorensen D. C. 1999. LAPACK User's Guide 3rd Ed SIAM Philadelphia PA. Anderson E. Bai Z. Bischof C. Blackford S. L. Demmel J. W. Dongarra J. J. Croz J. D. Greenbaum A. Hammarling S. Mckenney A. and Sorensen D. C. 1999. LAPACK User's Guide 3rd Ed SIAM Philadelphia PA.

4. Anderson E. and Dongarra J. J. 1990. Evaluating block algorithm variants in LAPACK. In Parallel Processing for Scientific Computing J. Dongarra et al. Eds. SIAM Philadelphia PA. 3--8. Anderson E. and Dongarra J. J. 1990. Evaluating block algorithm variants in LAPACK. In Parallel Processing for Scientific Computing J. Dongarra et al. Eds. SIAM Philadelphia PA. 3--8.

5. A new stable bidiagonal reduction algorithm

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3