Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth

Author:

Gottlob Georg1,Lanzinger Matthias2,Okulmus Cem3,Pichler Reinhard4

Affiliation:

1. University of Calabria, Italy and University of Oxford, UK

2. TU Wien, Austria and University of Oxford, UK

3. Umeå University, Sweden

4. TU Wien, Austria

Abstract

Various classic reasoning problems with natural hypergraph representations are known to be tractable if a hypertree decomposition (HD) of low width exists. The resulting algorithms are attractive for practical use in fields like databases and constraint satisfaction. However, algorithmic use of HDs relies on the difficult task of first computing a decomposition of the hypergraph underlying a given problem instance, which is then used to guide the algorithm for this particular instance. The performance of purely sequential methods for computing HDs is inherently limited, yet the problem is, theoretically, amenable to parallelisation. In this paper we propose the first algorithm for computing hypertree decompositions that is well-suited for parallelisation. The newly proposed algorithm log- k -decomp requires only a logarithmic number of recursion levels and additionally allows for highly parallelised pruning of the search space by restriction to so-called balanced separators. We provide a detailed experimental evaluation over the HyperBench benchmark and demonstrate that log- k -decomp outperforms the current state of the art significantly.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference33 articles.

1. Hypertree width and related hypergraph invariants

2. Dmitri Akatov . 2010. Exploiting Parallelism in Decomposition Methods for Constraint Satisfaction. Ph. D. Dissertation . University of Oxford , UK. https://ora.ox.ac.uk/objects/uuid:30773f0c-9b53-4684-b1c4-2d20c2322edd Dmitri Akatov. 2010. Exploiting Parallelism in Decomposition Methods for Constraint Satisfaction. Ph. D. Dissertation. University of Oxford, UK. https://ora.ox.ac.uk/objects/uuid:30773f0c-9b53-4684-b1c4-2d20c2322edd

3. Improved self-reduction algorithms for graphs with bounded treewidth

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3