Behavior-oriented data resource management in medical sensing systems

Author:

Noshadi Hyduke1,Dabiri Foad1,Meguerdichian Saro2,Potkonjak Miodrag2,Sarrafzadeh Majid2

Affiliation:

1. University of California at Los Angeles and Google Inc.

2. University of California at Los Angeles

Abstract

Wearable sensing systems have recently enabled a variety of medical monitoring and diagnostic applications in wireless health. The need for multiple sensors and constant monitoring leads these systems to be power hungry and expensive with short operating lifetimes. We introduce a novel methodology that takes advantage of contextual and semantic properties in human behavior to enable efficient design and optimization of such systems from the data and information point of view. This, in turn, directly influences the wireless communication and local processing power consumption. We exploit intrinsic space and temporal correlations between sensor data while considering both user and system contextual behavior. Our goal is to select a small subset of sensors that accurately capture and/or predict all possible signals of a fully instrumented wearable sensing system. Our approach leverages novel modeling, partitioning, and behavioral optimization, which consists of signal characterization, segmentation and time shifting, mutual signal prediction, and a simultaneous minimization composed of subset sensor selection and opportunistic sampling. We demonstrate the effectiveness of the technique on an insole instrumented with 99 pressure sensors placed in each shoe, which cover the bottom of the entire foot, resulting in energy reduction of 72% to 97% for error rates of 5% to 17.5%.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Privacy Enhancing in the IoT User/Device Behavior Analytics;ACM Transactions on Sensor Networks;2022-12-20

2. Constraint-Aware Data Analysis on Mobile Devices;Adaptive Mobile Computing;2017

3. Learning Hardware-Friendly Classifiers Through Algorithmic Stability;ACM Transactions on Embedded Computing Systems;2016-06-07

4. Energy Saving Using Scenario Based Sensor Selection on Medical Shoes;2015 International Conference on Healthcare Informatics;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3