Harnessing Neuron Stability to Improve DNN Verification

Author:

Duong Hai1ORCID,Xu Dong2ORCID,Nguyen Thanhvu1ORCID,Dwyer Matthew B.2ORCID

Affiliation:

1. George Mason University, Fairfax, USA

2. University of Virginia, Charlottesville, USA

Abstract

Deep Neural Networks (DNN) have emerged as an effective approach to tackling real-world problems. However, like human-written software, DNNs are susceptible to bugs and attacks. This has generated significant interest in developing effective and scalable DNN verification techniques and tools. Recent developments in DNN verification have highlighted the potential of constraint-solving approaches that combine abstraction techniques with SAT solving. Abstraction approaches are effective at precisely encoding neuron behavior when it is linear, but they lead to overapproximation and combinatorial scaling when behavior is non-linear. SAT approaches in DNN verification have incorporated standard DPLL techniques, but have overlooked important optimizations found in modern SAT solvers that help them scale on industrial benchmarks. In this paper, we present VeriStable, a novel extension of the recently proposed DPLL-based constraint DNN verification approach. VeriStable leverages the insight that while neuron behavior may be non-linear across the entire DNN input space, at intermediate states computed during verification many neurons may be constrained to have linear behavior – these neurons are stable. Efficiently detecting stable neurons reduces combinatorial complexity without compromising the precision of abstractions. Moreover, the structure of clauses arising in DNN verification problems shares important characteristics with industrial SAT benchmarks. We adapt and incorporate multi-threading and restart optimizations targeting those characteristics to further optimize DPLL-based DNN verification. We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully- connected feedforward networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets) applied to the standard MNIST and CIFAR datasets. Preliminary results show that VeriStable is competitive and outperforms state-of-the-art DNN verification tools, including α-β-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3