Sound and Music Recommendation with Knowledge Graphs

Author:

Oramas Sergio1,Ostuni Vito Claudio2,Noia Tommaso Di3,Serra Xavier1,Sciascio Eugenio Di3

Affiliation:

1. Universitat Pompeu Fabra, Barcelona, Spain

2. Pandora Media Inc., CA, USA

3. Polytechnic University of Bari, Bari, Italy

Abstract

The Web has moved, slowly but steadily, from a collection of documents towards a collection of structured data. Knowledge graphs have then emerged as a way of representing the knowledge encoded in such data as well as a tool to reason on them in order to extract new and implicit information. Knowledge graphs are currently used, for example, to explain search results, to explore knowledge spaces, to semantically enrich textual documents, or to feed knowledge-intensive applications such as recommender systems. In this work, we describe how to create and exploit a knowledge graph to supply a hybrid recommendation engine with information that builds on top of a collections of documents describing musical and sound items. Tags and textual descriptions are exploited to extract and link entities to external graphs such as WordNet and DBpedia, which are in turn used to semantically enrich the initial data. By means of the knowledge graph we build, recommendations are computed using a feature combination hybrid approach. Two explicit graph feature mappings are formulated to obtain meaningful item feature representations able to catch the knowledge embedded in the graph. Those content features are further combined with additional collaborative information deriving from implicit user feedback. An extensive evaluation on historical data is performed over two different datasets: a dataset of sounds composed of tags, textual descriptions, and user’s download information gathered from Freesound.org and a dataset of songs that mixes song textual descriptions with tags and user’s listening habits extracted from Songfacts.com and Last.fm, respectively. Results show significant improvements with respect to state-of-the-art collaborative algorithms in both datasets. In addition, we show how the semantic expansion of the initial descriptions helps in achieving much better recommendation quality in terms of aggregated diversity and novelty.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lazy learning and sparsity handling in recommendation systems;Knowledge and Information Systems;2024-09-02

2. Surveying More Than Two Decades of Music Information Retrieval Research on Playlists;ACM Transactions on Intelligent Systems and Technology;2024-08-12

3. Recommending Third-Party Libraries and Frameworks Using Topic Modeling in Software Projects;2024 4th International Conference on Advanced Research in Computing (ICARC);2024-02-21

4. A qualitative analysis of knowledge graphs in recommendation scenarios through semantics-aware autoencoders;Journal of Intelligent Information Systems;2024-01-19

5. Genre Classification Empowered by Knowledge-Embedded Music Representation;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3