Fast simulation of skeleton-driven deformable body characters

Author:

Kim Junggon1,Pollard Nancy S.1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA

Abstract

We propose a fast physically-based simulation system for skeleton-driven deformable body characters. Our system can generate realistic motions of self-propelled deformable body characters by considering the two-way interactions among the skeleton, the deformable body, and the environment in the dynamic simulation. It can also compute the passive jiggling behavior of a deformable body driven by a kinematic skeletal motion. We show that a well-coordinated combination of: (1) a reduced deformable body model with nonlinear finite elements, (2) a linear-time algorithm for skeleton dynamics, and (3) explicit integration can boost simulation speed to orders of magnitude faster than existing methods, while preserving modeling accuracy as much as possible. Parallel computation on the GPU has also been implemented to obtain an additional speedup for complicated characters. Detailed discussions of our engineering decisions for speed and accuracy of the simulation system are presented in the article. We tested our approach with a variety of skeleton-driven deformable body characters, and the tested characters were simulated in real time or near real time.

Funder

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Position-Based Deformable Colon Modeling for Endoscopic Procedures Simulation;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. Research progress in human-like indoor scene interaction;Journal of Image and Graphics;2024

3. Simulation of Hand Anatomy Using Medical Imaging;ACM Transactions on Graphics;2022-11-30

4. Differentiable Simulation of Inertial Musculotendons;ACM Transactions on Graphics;2022-11-30

5. Physics-Based Simulation of Soft-Body Deformation Using RGB-D Data;Sensors;2022-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3