Improving Energy Efficiency of Coarse-Grain Reconfigurable Arrays Through Modulo Schedule Compression/Decompression

Author:

Lee Hochan1,Moghaddam Mansureh S.1,Suh Dongkwan2,Egger Bernhard1

Affiliation:

1. Seoul National University, Seoul, Republic of Korea

2. Samsung Electronics, Seoul, Republic of Korea

Abstract

Modulo-scheduled course-grain reconfigurable array (CGRA) processors excel at exploiting loop-level parallelism at a high performance per watt ratio. The frequent reconfiguration of the array, however, causes between 25% and 45% of the consumed chip energy to be spent on the instruction memory and fetches therefrom. This article presents a hardware/software codesign methodology for such architectures that is able to reduce both the size required to store the modulo-scheduled loops and the energy consumed by the instruction decode logic. The hardware modifications improve the spatial organization of a CGRA’s execution plan by reorganizing the configuration memory into separate partitions based on a statistical analysis of code. A compiler technique optimizes the generated code in the temporal dimension by minimizing the number of signal changes. The optimizations achieve, on average, a reduction in code size of more than 63% and in energy consumed by the instruction decode logic by 70% for a wide variety of application domains. Decompression of the compressed loops can be performed in hardware with no additional latency, rendering the presented method ideal for low-power CGRAs running at high frequencies. The presented technique is orthogonal to dictionary-based compression schemes and can be combined to achieve a further reduction in code size.

Funder

Seoul National University

National Research Foundation of Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3