LFTHREADS

Author:

Gidenstam Anders1,Papatriantafilou Marina2

Affiliation:

1. University of Borås, Borås, Sweden

2. Chalmers University of Technology, Göteborg, Sweden

Abstract

This extended abstract presents LFTHREADS, a thread library entirely based on lock-free methods, i.e. no spinlocks or similar synchronization mechanisms are employed in the implementation of the multithreading. Since lockfreedom is highly desirable in multiprocessors/multicores due to its advantages in parallelism, fault-tolerance, convoy-avoidance and more, there is an increased demand in lock-free methods in parallel applications, hence also in multiprocessor/multicore system services. LFTHREADS is the first thread library that provides a lock-free implementation of blocking synchronization primitives for application threads; although the latter may sound like a contradicting goal, such objects have several benefits: e.g. library operations that block and unblock threads on the same synchronization object can make progress in parallel while maintaining the desired thread-level semantics and without having to wait for any "low" operations among them. Besides, as no spin-locks or similar synchronization mechanisms are employed, memory contention can be reduced and processors/cores are able to do useful work. As a consequence, applications, too, can enjoy enhanced parallelism and fault-tolerance. For the synchronization in LFTHREADS we have introduced a new method, which we call responsibility hand-off (RHO), that does not need any special kernel support. The RHO method is also of independent interest, as it can also serve as a tool for lock-free token passing, management of contention and interaction between scheduling and synchronization. This paper gives an outline and the context of LFTHREADS. For more details the reader is refered to [7] and [8].

Publisher

Association for Computing Machinery (ACM)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3