Formal foundations for hybrid hierarchies in GTRBAC

Author:

Joshi James B. D.1,Bertino Elisa2,Ghafoor Arif2,Zhang Yue1

Affiliation:

1. University of Pittsburgh, Pennsylvania

2. Purdue University, West Lafayette, Indiana

Abstract

A role hierarchy defines permission acquisition and role-activation semantics through role--role relationships. It can be utilized for efficiently and effectively structuring functional roles of an organization having related access-control needs. The focus of this paper is the analysis of hybrid role hierarchies in the context of the generalized temporal role-based access control (GTRBAC) model that allows specification of a comprehensive set of temporal constraints on role, user-role, and role-permission assignments. We introduce the notion of uniquely activable set (UAS) associated with a role hierarchy that indicates the access capabilities of a user resulting from his membership to a role in the hierarchy. Identifying such a role set is essential, while making an authorization decision about whether or not a user should be allowed to activate a particular combination of roles in a single session. We formally show how UAS can be determined for a hybrid hierarchy. Furthermore, within a hybrid hierarchy, various hierarchical relations may be derived between an arbitrary pair of roles. We present a set of inference rules that can be used to generate all the possible derived relations that can be inferred from a specified set of hierarchical relations and show that it is sound and complete . We also present an analysis of hierarchy transformations with respect to role addition, deletion, and partitioning, and show how various cases of these transformations allow the original permission acquisition and role-activation semantics to be managed. The formal results presented here provide a basis for developing efficient security administration and management tools.

Funder

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3