Constraint Solving via Fractional Edge Covers

Author:

Grohe Martin1,Marx Dániel2

Affiliation:

1. RWTH Aachen University, Lehrstuhl für Informatik 7, Aachen, Germany

2. Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary

Abstract

Many important combinatorial problems can be modeled as constraint satisfaction problems. Hence, identifying polynomial-time solvable classes of constraint satisfaction problems has received a lot of attention. In this article, we are interested in structural properties that can make the problem tractable. So far, the largest structural class that is known to be polynomial-time solvable is the class of bounded hypertree width instances introduced by Gottlob et al. [2002]. Here we identify a new class of polynomial-time solvable instances: those having bounded fractional edge cover number. Combining hypertree width and fractional edge cover number, we then introduce the notion of fractional hypertree width. We prove that constraint satisfaction problems with bounded fractional hypertree width can be solved in polynomial time (provided that the tree decomposition is given in the input). Together with a recent approximation algorithm for finding such decompositions [Marx 2010], it follows that bounded fractional hypertree width is now the most generally known structural property that guarantees polynomial-time solvability.

Funder

European Research Council

Országos Tudományos Kutatási Alapprogramok

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing optimal hypertree decompositions with SAT;Artificial Intelligence;2023-12

2. Fractional covers of hypergraphs with bounded multi-intersection;Theoretical Computer Science;2023-11

3. Scalable Spreadsheet-Driven End-User Applications with Incremental Computation;Proceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software;2023-10-18

4. Computing a Partition Function of a Generalized Pattern-Based Energy over a Semiring;Theory of Computing Systems;2023-07-10

5. Applications of Information Inequalities to Database Theory Problems;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3