Affiliation:
1. Sun Yat-sen University, China
2. University of Birmingham, UK
Abstract
A feature model (FM) is a compact representation of the information of all possible products from software product lines. The optimal feature selection involves the simultaneous optimization of multiple (usually more than three) objectives in a large and highly constrained search space. By combining our previous work on many-objective evolutionary algorithm (i.e., VaEA) with two different satisfiability (SAT) solvers, this article proposes a new approach named
SATVaEA
for handling the optimal feature selection problem. In SATVaEA, an FM is simplified with the number of both features and constraints being reduced greatly. We enhance the search of VaEA by using two SAT solvers: one is a stochastic local search--based SAT solver that can quickly repair infeasible configurations, whereas the other is a conflict-driven clause-learning SAT solver that is introduced to generate diversified products. We evaluate SATVaEA on 21 FMs with up to 62,482 features, including two models with realistic values for feature attributes. The experimental results are promising, with SATVaEA returning 100% valid products on almost all FMs. For models with more than 10,000 features, the search in SATVaEA takes only a few minutes. Concerning both effectiveness and efficiency, SATVaEA significantly outperforms other state-of-the-art algorithms.
Funder
Scientific Research Special Plan of Guangzhou Science and Technology Programme
National Basic Research Program of China 973
Excellent Graduate Student Innovation Program from the Collaborative Innovation Center of High Performance Computing
Program for Guangdong Introducing Innovative and Enterpreneurial Teams
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献