Modularity, Code Specialization, and Zero-Cost Abstractions for Program Verification

Author:

Ho Son1ORCID,Fromherz Aymeric1ORCID,Protzenko Jonathan2ORCID

Affiliation:

1. Inria, France

2. Microsoft Research, USA

Abstract

For all the successes in verifying low-level, efficient, security-critical code, little has been said or studied about the structure, architecture and engineering of such large-scale proof developments. We present the design, implementation and evaluation of a set of language-based techniques that allow the programmer to modularly write and verify code at a high level of abstraction, while retaining control over the compilation process and producing high-quality, zero-overhead, low-level code suitable for integration into mainstream software. We implement our techniques within the F proof assistant, and specifically its shallowly-embedded Low toolchain that compiles to C. Through our evaluation, we establish that our techniques were critical in scaling the popular HACL library past 100,000 lines of verified source code, and brought about significant gains in proof engineer productivity. The exposition of our methodology converges on one final, novel case study: the streaming API, a finicky API that has historically caused many bugs in high-profile software. Using our approach, we manage to capture the streaming semantics in a generic way, and apply it “for free” to over a dozen use-cases. Six of those have made it into the reference implementation of the Python programming language, replacing the previous CVE-ridden code.

Funder

Agence Nationale de la Recherche

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference78 articles.

1. Dijkstra monads for free

2. The Last Mile: High-Assurance and High-Speed Cryptographic Implementations

3. Cogent

4. Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy Pollack, Olivier Savary Belanger, Matthieu Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler for Coq. In 3rd International Workshop on Coq for Programming Languages (CoqPL).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3