Hypomimia Recognition in Parkinson’s Disease With Semantic Features

Author:

Su Ge1,Lin Bo1,Luo Wei2,Yin Jianwei1,Deng Shuiguang1,Gao Honghao3,Xu Renjun4

Affiliation:

1. College of Computer Science, Zhejiang University, Hangzhou, Zhejiang Province, China

2. Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

3. School of Computer Engineering and Science, Shanghai University, Shanghai, China

4. Center for Data Science, Zhejiang University, Hangzhou, Zhejiang Province, China

Abstract

Parkinson’s disease is the second most common neurodegenerative disorder, commonly affecting elderly people over the age of 65. As the cardinal manifestation, hypomimia, referred to as impairments in normal facial expressions, stays covert. Even some experienced doctors may miss these subtle changes, especially in a mild stage of this disease. The existing methods for hypomimia recognition are mainly dominated by statistical variable-based methods with the help of traditional machine learning algorithms. Despite the success of recognizing hypomimia, they show a limited accuracy and lack the capability of performing semantic analysis. Therefore, developing a computer-aided diagnostic method for semantically recognizing hypomimia is appealing. In this article, we propose a Semantic Feature based Hypomimia Recognition network , named SFHR-NET , to recognize hypomimia based on facial videos. First, a Semantic Feature Classifier (SF-C) is proposed to adaptively adjust feature maps salient to hypomimia, which leads the encoder and classifier to focus more on areas of hypomimia-interest. In SF-C, the progressive confidence strategy (PCS) ensures more reliable semantic features. Then, a two-stream framework is introduced to fuse the spatial data stream and temporal optical stream, which allows the encoder to semantically and progressively characterize the rigid process of hypomimia. Finally, to improve the interpretability of the model, Gradient-weighted Class Activation Mapping (Grad-CAM) is integrated to generate attention maps that cast our engineered features into hypomimia-interest regions. These highlighted regions provide visual explanations for decisions of our network. Experimental results based on real-world data demonstrate the effectiveness of our method in detecting hypomimia.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Science and Technology Major Project of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3