Certifying graph-manipulating C programs via localizations within data structures

Author:

Wang Shengyi1,Cao Qinxiang2,Mohan Anshuman1,Hobor Aquinas1

Affiliation:

1. National University of Singapore, Singapore

2. Shanghai Jiao Tong University, China

Abstract

We develop powerful and general techniques to mechanically verify realistic programs that manipulate heap-represented graphs. These graphs can exhibit well-known organization principles, such as being a directed acyclic graph or a disjoint-forest; alternatively, these graphs can be totally unstructured. The common thread for such structures is that they exhibit deep intrinsic sharing and can be expressed using the language of graph theory. We construct a modular and general setup for reasoning about abstract mathematical graphs and use separation logic to define how such abstract graphs are represented concretely in the heap. We develop a Localize rule that enables modular reasoning about such programs, and show how this rule can support existential quantifiers in postconditions and smoothly handle modified program variables. We demonstrate the generality and power of our techniques by integrating them into the Verified Software Toolchain and certifying the correctness of seven graph-manipulating programs written in CompCert C, including a 400-line generational garbage collector for the CertiCoq project. While doing so, we identify two places where the semantics of C is too weak to define generational garbage collectors of the sort used in the OCaml runtime. Our proofs are entirely machine-checked in Coq.

Funder

Yale-NUS College

Shanghai Pujiang Program

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

2. Melocoton: A Program Logic for Verified Interoperability Between OCaml and C;Proceedings of the ACM on Programming Languages;2023-10-16

3. VIP: verifying real-world C idioms with integer-pointer casts;Proceedings of the ACM on Programming Languages;2022-01-12

4. A separation logic for heap space under garbage collection;Proceedings of the ACM on Programming Languages;2022-01-12

5. Coq’s vibrant ecosystem for verification engineering (invited talk);Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs;2022-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3