On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications

Author:

Pohst Michael

Abstract

The problem of determining shortest vectors and reduced bases or successive minima of lattices often occurs in algebra and number theory. Nevertheless, computational methods for the solution hardly exist in the literature. It is the aim of this paper to develop efficient algorithms for this purpose.

Publisher

Association for Computing Machinery (ACM)

Reference5 articles.

1. Minkowski reduction of integral matrices

2. Pohst, On maximal finite irreducible subgroups of GL(n,Z), V. The eight dimensional case and a complete description of dimensions less than ten;Plesken M;Math. Comp.,1980

3. W. Plesken & M. Pohst On integral lattices generated by vectors of minimal length to appear. W. Plesken & M. Pohst On integral lattices generated by vectors of minimal length to appear.

4. M. Pohst & H. Zassenhaus On effective computation of fundamental units to appear. M. Pohst & H. Zassenhaus On effective computation of fundamental units to appear.

5. H. Zassenhaus Gauss theory of ternary quadratic forms an example of the theory of homogeneous forms in many variables with applications Number Theory Seminar Lecture Notes California Institute of Technology. H. Zassenhaus Gauss theory of ternary quadratic forms an example of the theory of homogeneous forms in many variables with applications Number Theory Seminar Lecture Notes California Institute of Technology.

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Nested Search for Lattice Enumeration;2024-01-24

2. Channel Coding Toward 6G: Technical Overview and Outlook;IEEE Open Journal of the Communications Society;2024

3. A Novel Oscillator Ising Machine Coupling Scheme for High-Quality Optimization;Lecture Notes in Computer Science;2024

4. A New Self-dual BKZ Algorithm Based on Lattice Sieving;Communications in Computer and Information Science;2024

5. A Survey of Algorithms for Addressing the Shortest Vector Problem (SVP);Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3