Cognitive Wearable Robotics for Autism Perception Enhancement

Author:

Chen Min1,Xiao Wenjing1,Hu Long1,Ma Yujun1,Zhang Yin2,Tao Guangming3

Affiliation:

1. School of Computer Science and Technology, Huazhong University of Science and Technology, China

2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, China

3. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China

Abstract

Autism spectrum disorder (ASD) is a serious hazard to the physical and mental health of children, which limits the social activities of patients throughout their lives and places a heavy burden on families and society. The developments of communication techniques and artificial intelligence (AI) have provided new potential methods for the treatment of autism. The existing treatment systems based on AI for children with ASD focus on detecting health status and developing social skills. However, the contradiction between the terminal interaction capability and availability cannot meet the needs for real application scenarios. At the same time, the lack of diverse data cannot provide individualized care for autistic children. To explore this robot-based approach, a novel AI-based first-view-robot architecture is proposed in this article. By providing care from the first-person perspective, the proposed wearable robot overcomes the difficulty of the absence of cognitive ability in the third-view of traditional robotics and improves the social interaction ability of children with ASD. The first-view-robot architecture meets the requirements of dynamic, individualized, and highly immersed interaction services for autistic children. First, the multi-modal and multi-scene data collection processes of standard, static, and dynamic datasets are introduced in detail. Then, to comprehensively evaluate the learning ability of children with ASD through mental states and external performances, a learning assessment model with emotion correction is proposed. Besides, a wearable robot-assisted environment perception and expression enhancement mechanism for children with ASD is realized by reinforcement learning, which can be adapted to interactive environments with optimal action policies. An interactive testbed for children with ASD treatments is demonstrated and experimental cases for test subjects are presented. Last, three open issues are discussed from data processing, robot designing, and service responding perspectives.

Funder

National Key R&D Program of China

Nature Science Foundation of China

Technology Innovation Project of Hubei Province of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3