Optimal power allocation in server farms

Author:

Gandhi Anshul1,Harchol-Balter Mor1,Das Rajarshi2,Lefurgy Charles3

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

2. IBM Research, Hawthorne, NY, USA

3. IBM Research, Austin, TX, USA

Abstract

Server farms today consume more than 1.5% of the total electricity in the U.S. at a cost of nearly $4.5 billion. Given the rising cost of energy, many industries are now seeking solutions for how to best make use of their available power. An important question which arises in this context is how to distribute available power among servers in a server farm so as to get maximum performance. By giving more power to a server, one can get higher server frequency (speed). Hence it is commonly believed that, for a given power budget, performance can be maximized by operating servers at their highest power levels. However, it is also conceivable that one might prefer to run servers at their lowest power levels, which allows more servers to be turned on for a given power budget. To fully understand the effect of power allocation on performance in a server farm with a fixed power budget, we introduce a queueing theoretic model, which allows us to predict the optimal power allocation in a variety of scenarios. Results are verified via extensive experiments on an IBM BladeCenter. We find that the optimal power allocation varies for different scenarios. In particular, it is not always optimal to run servers at their maximum power levels. There are scenarios where it might be optimal to run servers at their lowest power levels or at some intermediate power levels. Our analysis shows that the optimal power allocation is non-obvious and depends on many factors such as the power-to-frequency relationship in the processors, the arrival rate of jobs, the maximum server frequency, the lowest attainable server frequency and the server farm configuration. Furthermore, our theoretical model allows us to explore more general settings than we can implement, including arbitrarily large server farms and different power-to-frequency curves. Importantly, we show that the optimal power allocation can significantly improve server farm performance, by a factor of typically 1.4 and as much as a factor of 5 in some cases.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference23 articles.

1. Lesswatts.org: Race to idle. http://www.lesswatts.org/projects/applications-power-management/race-to-idle.php. Lesswatts.org: Race to idle. http://www.lesswatts.org/projects/applications-power-management/race-to-idle.php.

2. Intel: Nehalem. http://intel.wingateweb.com/US08/published/sessions/NGMS001/SF08_NGMS001_100t.pdf. Intel: Nehalem. http://intel.wingateweb.com/US08/published/sessions/NGMS001/SF08_NGMS001_100t.pdf.

3. Managing energy and server resources in hosting centers

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3