Affiliation:
1. MIT, Cambridge, MA, USA
Abstract
The popularity of
Aloha
-like algorithms for resolution of contention between multiple entities accessing common resources is due to their extreme simplicity and distributed nature. Example applications of such algorithms include Ethernet and recently emerging wireless multi-access networks. Despite a long and exciting history of more than four decades, the question of designing an algorithm that is
essentially
as simple and distributed as Aloha while being efficient has remained unresolved.
In this paper, we resolve this question successfully for a network of queues where contention is modeled through independent-set constraints over the network graph. The work by Tassiulas and Ephremides (1992) suggests that an algorithm that schedules queues so that the summation of `weight' of scheduled queues is maximized, subject to constraints, is efficient. However, implementing such an algorithm using Aloha-like mechanism has remained a mystery. We design such an algorithm building upon a Metropolis-Hastings sampling mechanism along with selection of `weight' as an appropriate function of the queue-size. The key ingredient in establishing the efficiency of the algorithm is a novel
adiabatic
-like theorem for the underlying queueing network, which may be of general interest in the context of dynamical systems.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献