Latent L-systems: Transformer-based Tree Generator

Author:

Lee Jae Joong1ORCID,Li Bosheng1ORCID,Benes Bedrich1ORCID

Affiliation:

1. Department of Computer Science, Purdue University, USA

Abstract

We show how a Transformer can encode hierarchical tree-like string structures by introducing a new deep learning-based framework for generating 3D biological tree models represented as Lindenmayer system (L-system) strings. L-systems are string-rewriting procedural systems that encode tree topology and geometry. L-systems are efficient, but creating the production rules is one of the most critical problems precluding their usage in practice. We substitute the procedural rules creation with a deep neural model. Instead of writing the rules, we train a deep neural model that produces the output strings. We train our model on 155k tree geometries that are encoded as L-strings, de-parameterized, and converted to a hierarchy of linear sequences corresponding to branches. An end-to-end deep learning model with an attention mechanism then learns the distributions of geometric operations and branches from the input, effectively replacing the L-system rewriting rule generation. The trained deep model generates new L-strings representing 3D tree models in the same way L-systems do by providing the starting string. Our model allows for the generation of a wide variety of new trees, and the deep model agrees with the input by 93.7% in branching angles, 97.2% in branch lengths, and 92.3% in an extracted list of geometric features. We also validate the generated trees using perceptual metrics showing 97% agreement with input geometric models.

Funder

Foundation for Food and Agriculture Research, United States

PERSEUS

USDA NIFA

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference65 articles.

1. Botanical Tree Image Generation

2. J. Arvo and D. Kirk. 1988. Modeling plants with environment-sensitive automata. In Proceedings of the Ausgraph. 27–33.

3. Techniques for inferring context-free Lindenmayer systems with genetic algorithm

4. Christopher M. Bishop and Nasser M. Nasrabadi. 2006. Pattern Recognition and Machine Learning. Vol. 4. Springer.

5. A connection between partial symmetry and inverse procedural modeling

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3