Community-enhanced Link Prediction in Dynamic Networks

Author:

Kumar Mukesh1ORCID,Mishra Shivansh1ORCID,Singh Shashank Sheshar2ORCID,Biswas Bhaskar1ORCID

Affiliation:

1. Indian Institute of Technology (BHU), India

2. Thapar Institute of Engineering and Technology, India

Abstract

The growing popularity of online social networks is quite evident nowadays and provides an opportunity to allow researchers in finding solutions for various practical applications. Link prediction is the technique of understanding network structure and identifying missing and future links in social networks. One of the well-known classes of methods in link prediction is a similarity-based method, which uses local and global topological information of the network to predict missing links. Some methods also exist based on quasi-local features to achieve a trade-off between local and global information on static networks. These quasi-local similarity-based methods are not best suited for considering community information in dynamic networks, failing to balance accuracy and efficiency. Therefore, a community-enhanced framework is presented in this article to predict missing links on dynamic social networks. First, a link prediction framework is presented to predict missing links using parameterized influence regions of nodes and their contribution in community partitions. Then, a unique feature set is generated using local, global, and quasi-local similarity-based as well as community information-based features. This feature set is further optimized using scoring-based feature selection methods to select only the most relevant features. Finally, four machine learning-based classification models are used for link prediction. The experiments are performed on six well-known dynamic networks and three performance metrics, and the results demonstrate that the proposed method outperforms the state-of-the-art methods.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3