Towards Visualization Recommendation Systems

Author:

Vartak Manasi1,Huang Silu2,Siddiqui Tarique2,Madden Samuel1,Parameswaran Aditya2

Affiliation:

1. MIT

2. University of Illinois (UIUC)

Abstract

Data visualization is often used as the first step while performing a variety of analytical tasks. With the advent of large, high-dimensional datasets and significant interest in data science, there is a need for tools that can support rapid visual analysis. In this paper we describe our vision for a new class of visualization systems, namely visualization recommendation systems, that can automatically identify and interactively recommend visualizations relevant to an analytical task. We detail the key requirements and design considerations for a visualization recommendation system. We also identify a number of challenges in realizing this vision and describe some approaches to address them.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference46 articles.

1. Tableau showme. {Online; accessed 17-Aug-2015}. Tableau showme. {Online; accessed 17-Aug-2015}.

2. The Aqua approximate query answering system

3. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions

4. BlinkDB

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Future Directions and Innovations in the Field of Business Operations Through Data Tools;Advances in Business Information Systems and Analytics;2024-09-13

2. Marrying Dialogue Systems with Data Visualization: Interactive Data Visualization Generation from Natural Language Conversations;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. TaskFinder: A Semantics-Based Methodology for Visualization Task Recommendation;Analytics;2024-07-04

4. Automated Recommendation of Aggregate Visualizations for Crowdfunding Data;Algorithms;2024-06-06

5. Demonstration of FeVisQA: Free-Form Question Answering over Data Visualization;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3