Supporting Mixed-domain Mixed-precision Matrix Multiplication within the BLIS Framework

Author:

Van Zee Field G.1,Parikh Devangi N.1,Geijn Robert A. Van De1

Affiliation:

1. The University of Texas at Austin, TX

Abstract

We approach the problem of implementing mixed-datatype support within the general matrix multiplication ( gemm ) operation of the BLAS-like Library Instantiation Software framework, whereby each matrix operand A , B , and C may be stored as single- or double-precision real or complex values. Another factor of complexity, whereby the matrix product and accumulation are allowed to take place in a precision different from the storage precisions of either A or B , is also discussed. We first break the problem into orthogonal dimensions, considering the mixing of domains separately from mixing precisions. Support for all combinations of matrix operands stored in either the real or complex domain is mapped out by enumerating the cases and describing an implementation approach for each. Supporting all combinations of storage and computation precisions is handled by typecasting the matrices at key stages of the computation—during packing and/or accumulation, as needed. Several optional optimizations are also documented. Performance results gathered on a 56-core Marvell ThunderX2 and a 52-core Intel Xeon Platinum demonstrate that high performance is mostly preserved, with modest slowdowns incurred from unavoidable typecast instructions. The mixed-datatype implementation confirms that combinatorial intractability is avoided, with the framework relying on only two assembly microkernels to implement 128 datatype combinations.

Funder

Oracle, Huawei, and the National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference29 articles.

1. E. Apra E. J. Bylaska W. A. de Jong N. Govind K. Kowalski T. P. Straatsma M. Valiev H. J. J. van Dam D. Wang T. L. Windus J. Hammond J. Autschbach K. Bhaskaran-Nair J. Brabec K. Lopata S. A. Fischer S. Krishnamoorthy M. Jacquelin W. Ma M. Klemm O. Villa Y. Chen V. Anisimov F. Aquino S. Hirata M. T. Hackler V. Konjkov D. Mejia-Rodriguez T. Risthaus M. Malagoli A. Marenich A. Otero de-la Roza J. Mullin P. Nichols R. Peverati J. Pittner Y. Zhao P.-D. Fan A. Fonari M. J. Williamson R. J. Harrison J. R. Rehr M. Dupuis D. Silverstein D. M. A. Smith J. Nieplocha V. Tipparaju M. Krishnan B. E. Van Kuiken A. Vazquez-Mayagoitia L. Jensen M. Swart Q. Wu T. Van Voorhis A. A. Auer M. Nooijen L. D. Crosby E. Brown G. Cisneros G. I. Fann H. Fruchtl J. Garza K. Hirao R. A. Kendall J. A. Nichols K. Tsemekhman K. Wolinski J. Anchell D. E. Bernholdt P. Borowski T. Clark D. Clerc H. Dachsel M. J. O. Deegan K. Dyall D. Elwood E. Glendening M. Gutowski A. C. Hess J. Jaffe B. G. Johnson J. Ju R. Kobayashi R. Kutteh Z. Lin R. Littlefield X. Long B. Meng T. Nakajima S. Niu L. Pollack M. Rosing K. Glaesemann G. Sandrone M. Stave H. Taylor G. Thomas J. H. van Lenthe A. T. Wong and Z. Zhang. 2018. NWChem A Computational Chemistry Package for Parallel Computers Version 6.8 https://www.nwchem-sw.org/blas. E. Apra E. J. Bylaska W. A. de Jong N. Govind K. Kowalski T. P. Straatsma M. Valiev H. J. J. van Dam D. Wang T. L. Windus J. Hammond J. Autschbach K. Bhaskaran-Nair J. Brabec K. Lopata S. A. Fischer S. Krishnamoorthy M. Jacquelin W. Ma M. Klemm O. Villa Y. Chen V. Anisimov F. Aquino S. Hirata M. T. Hackler V. Konjkov D. Mejia-Rodriguez T. Risthaus M. Malagoli A. Marenich A. Otero de-la Roza J. Mullin P. Nichols R. Peverati J. Pittner Y. Zhao P.-D. Fan A. Fonari M. J. Williamson R. J. Harrison J. R. Rehr M. Dupuis D. Silverstein D. M. A. Smith J. Nieplocha V. Tipparaju M. Krishnan B. E. Van Kuiken A. Vazquez-Mayagoitia L. Jensen M. Swart Q. Wu T. Van Voorhis A. A. Auer M. Nooijen L. D. Crosby E. Brown G. Cisneros G. I. Fann H. Fruchtl J. Garza K. Hirao R. A. Kendall J. A. Nichols K. Tsemekhman K. Wolinski J. Anchell D. E. Bernholdt P. Borowski T. Clark D. Clerc H. Dachsel M. J. O. Deegan K. Dyall D. Elwood E. Glendening M. Gutowski A. C. Hess J. Jaffe B. G. Johnson J. Ju R. Kobayashi R. Kutteh Z. Lin R. Littlefield X. Long B. Meng T. Nakajima S. Niu L. Pollack M. Rosing K. Glaesemann G. Sandrone M. Stave H. Taylor G. Thomas J. H. van Lenthe A. T. Wong and Z. Zhang. 2018. NWChem A Computational Chemistry Package for Parallel Computers Version 6.8 https://www.nwchem-sw.org/blas.

2. BLAS. 2019. Retrieved from http://www.netlib.org/blas. BLAS. 2019. Retrieved from http://www.netlib.org/blas.

3. Basic linear algebra subprograms technical forum standard;BLAS.;Int. J. High Perform. Appl. Supercomput.,2002

4. BLIS. 2019. Retrieved from https://github.com/flame/blis. BLIS. 2019. Retrieved from https://github.com/flame/blis.

5. Patrick Bridges Nathan Doss William Gropp Edward Karrels Ewing Lusk and Anthony Skjellum. 1995. User’s Guide for mpich a Portable Implementation of MPI. Argonne National Laboratory. Patrick Bridges Nathan Doss William Gropp Edward Karrels Ewing Lusk and Anthony Skjellum. 1995. User’s Guide for mpich a Portable Implementation of MPI. Argonne National Laboratory.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Which C compiler and BLAS/LAPACK library should I use: gretl’s numerical efficiency in different configurations;Computational Statistics;2024-03-22

2. Toward Matrix Multiplication for Deep Learning Inference on the Xilinx Versal;2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2023-03

3. Toward performance-portable PETSc for GPU-based exascale systems;Parallel Computing;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3