C-Stream

Author:

Şahin Semih1,Gedik Buğra2

Affiliation:

1. Georgia Tech, Atlanta, GA, USA

2. Bilkent University, Ankara, Turkey

Abstract

Stream processing is a computational paradigm for on-the-fly processing of live data. This paradigm lends itself to implementations that can provide high throughput and low latency by taking advantage of various forms of parallelism that are naturally captured by the stream processing model of computation, such as pipeline, task, and data parallelism. In this article, we describe the design and implementation of C-Stream , which is an elastic stream processing engine. C-Stream encompasses three unique properties. First, in contrast to the widely adopted event-based interface for developing streaming operators, C-Stream provides an interface wherein each operator has its own driver loop and relies on data availability application programming interfaces (APIs) to decide when to perform its computations. This self-control-based model significantly simplifies the development of operators that require multiport synchronization. Second, C-Stream contains a dynamic scheduler that manages the multithreaded execution of the operators. The scheduler, which is customizable via plug-ins, enables the execution of the operators as co-routines, using any number of threads. The base scheduler implements back-pressure, provides data availability APIs, and manages preemption and termination handling. Last, C-Stream varies the degree of parallelism to resolve bottlenecks by both dynamically changing the number of threads used to execute an application and adjusting the number of replicas of data-parallel operators. We provide an experimental evaluation of C-Stream. The results show that C-Stream is scalable, highly customizable, and can resolve bottlenecks by dynamically adjusting the level of data parallelism used.

Funder

FP7 European Commission, Marie Curie Actions

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the building of efficient self-adaptable health data science services by using dynamic patterns;Future Generation Computer Systems;2023-08

2. The first study of 10nm-class backside defect using Co-Routine based ETL in DRAM;2022 19th International SoC Design Conference (ISOCC);2022-10-19

3. An integrated approach of designing functionality with security for distributed cyber-physical systems;The Journal of Supercomputing;2022-04-09

4. Self‐adaptation on parallel stream processing: A systematic review;Concurrency and Computation: Practice and Experience;2021-12-07

5. Towards Profile-Guided Optimization for Safe and Efficient Parallel Stream Processing in Rust;2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3