Location-Centered House Price Prediction: A Multi-Task Learning Approach

Author:

Gao Guangliang1ORCID,Bao Zhifeng2ORCID,Cao Jie3ORCID,Qin A. K.4ORCID,Sellis Timos4ORCID

Affiliation:

1. Jiangsu Police Institute, Nanjing, China

2. RMIT University, Melbourne, Australia

3. Nanjing University of Finance and Economics, Nanjing, China

4. Swinburne University of Technology, Melbourne, Australia

Abstract

Accurate house prediction is of great significance to various real estate stakeholders such as house owners, buyers, and investors. We propose a location-centered prediction framework that differs from existing work in terms of data profiling and prediction model. Regarding data profiling, we make an important observation as follows – besides the in-house features such as floor area, the location plays a critical role in house price prediction. Unfortunately, existing work either overlooked it or had a coarse grained measurement of locations. Thereby, we define and capture a fine-grained location profile powered by a diverse range of location data sources, including transportation profile, education profile, suburb profile based on census data, and facility profile. Regarding the choice of prediction model, we observe that a variety of approaches either consider the entire data for modeling, or split the entire house data and model each partition independently. However, such modeling ignores the relatedness among partitions, and for all prediction scenarios, there may not be sufficient training samples per partition for the latter approach. We address this problem by conducting a careful study of exploiting the Multi-Task Learning (MTL) model. Specifically, we map the strategies for splitting the entire house data to the ways the tasks are defined in MTL, and select specific MTL-based methods with different regularization terms to capture and exploit the relatedness among tasks. Based on real-world house transaction data collected in Melbourne, Australia, we design extensive experimental evaluations, and the results indicate a significant superiority of MTL-based methods over state-of-the-art approaches. Meanwhile, we conduct an in-depth analysis on the impact of task definitions and method selections in MTL on the prediction performance, and demonstrate that the impact of task definitions on prediction performance far exceeds that of method selections.

Funder

National Natural Science Foundation of China

International Innovation Cooperation Province

High-Level Introduction of Talent Scientific Research Start-up Fund of Jiangsu Police Institute

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3