Strategies for Practical Hybrid Attack Graph Generation and Analysis

Author:

Li Ming1,Hawrylak Peter1,Hale John1

Affiliation:

1. The University of Tulsa

Abstract

As an analytical tool in cyber-security, an attack graph (AG) is capable of discovering multi-stage attack vectors on target computer networks. Cyber-physical systems (CPSs) comprise a special type of network that not only contains computing devices but also integrates components that operate in the continuous domain, such as sensors and actuators. Using AGs on CPSs requires that the system models and exploit patterns capture both token- and real-valued information. In this paper, we describe a hybrid AG model for security analysis of CPSs and computer networks. Specifically, we focus on two issues related to applying the model in practice: efficient hybrid AG generation and techniques for information extraction from them. To address the first issue, we present an accelerated hybrid AG generator that employs parallel programming and high performance computing (HPC). We conduct performance tests on CPU and GPU platforms to characterize the efficiency of our parallel algorithms. To address the second issue, we introduce an analytical regimen based on centrality analysis and apply it to a hybrid AG generated for a target CPS system to discover effective vulnerability remediation solutions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber attacker’s next action prediction on dynamic real-time behavior model;Computers and Electrical Engineering;2024-01

2. State Space Explosion Mitigation for Large-Scale Attack and Compliance Graphs Using Synchronous Exploit Firing;IEEE Open Journal of the Computer Society;2023

3. A Hybrid Attack Graph Analysis Method based on Model Checking;2022 Tenth International Conference on Advanced Cloud and Big Data (CBD);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3