Polynomial Counting in Anonymous Dynamic Networks with Applications to Anonymous Dynamic Algebraic Computations

Author:

Kowalski Dariusz R.1,Mosteiro Miguel A.2ORCID

Affiliation:

1. Augusta University and SWPS University of Social Sciences and Humanities, Warszawa, Poland

2. Pace University, New York, NY, USA

Abstract

Starting with with work of Michail et al., the problem of Counting the number of nodes in Anonymous Dynamic Networks has attracted a lot of attention. The problem is challenging because nodes are indistinguishable (they lack identifiers and execute the same program), and the topology may change arbitrarily from round to round of communication, as long as the network is connected in each round. The problem is central in distributed computing, as the number of participants is frequently needed to make important decisions, including termination, agreement, synchronization, among others. A variety of distributed algorithms built on top of mass-distribution techniques have been presented, analyzed, and experimentally evaluated; some of them assumed additional knowledge of network characteristics, such as bounded degree or given upper bound on the network size. However, the question of whether Counting can be solved deterministically in sub-exponential time remained open. In this work, we answer this question positively by presenting M ethodical C ounting , which runs in polynomial time and requires no knowledge of network characteristics. Moreover, we also show how to extend M ethodical C ounting to compute the sum of input values and more complex functions without extra cost. Our analysis leverages previous work on random walks in evolving graphs, combined with carefully chosen alarms in the algorithm that control the process and its parameters. To the best of our knowledge, our Counting algorithm and its extensions to other algebraic and Boolean functions are the first that can be implemented in practice with worst-case guarantees.

Funder

National Science Center Poland

Royal Society

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algebraic Computations in Anonymous VANET;Lecture Notes in Computer Science;2024

2. History Trees and Their Applications;Lecture Notes in Computer Science;2024

3. Faster Supervised Average Consensus in Adversarial and Stochastic Anonymous Dynamic Networks;ACM Transactions on Parallel Computing;2023-06-20

4. Brief Announcement: Efficient Computation in Congested Anonymous Dynamic Networks;Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing;2023-06-16

5. Computing in Anonymous Dynamic Networks Is Linear;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3