1. Explainable artificial intelligence: an analytical review
2. Stephanie A Bell. 2001. A beginner's guide to uncertainty of measurement. https://api.semanticscholar.org/CorpusID:216013913
3. Kirill Bykov, Marina M-C Höhne, Klaus-Robert Müller, Shinichi Nakajima, and Marius Kloft. 2020. How Much Can I Trust You?-Quantifying Uncertainties in Explaining Neural Networks. arXiv preprint arXiv:2006.09000 (2020).
4. Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning
5. Arun Das and Paul Rad. 2020. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371 (2020).