Affiliation:
1. Stanford University, Stanford, California
2. University of California at Santa Barbara and System Development Corporation, Santa Monica, California
Abstract
The concept of time-shared computer operations is briefly described and a model of a time-sharing system is proposed, based on the assumption that both interarrival and service times possess an exponential distribution. Although the process described by this model is non-Markovian, an imbedded Markov chain is analyzed by exploiting the fact that the instants of completion of a “quantum” of service are regeneration points. It is shown that user congestion possesses a limiting distribution, and the method of generating functions is used to derive this distribution. The concept of cycle time is discussed and two measures of cycle time developed for a scheduling discipline employing a single queue. Finally, a number of numerical examples are presented to illustrate the effect of the system parameters upon user congestion, system response time and computer efficiency.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献