CUFF: A Configurable Uncertainty-driven Forecasting Framework for Green AI Clusters

Author:

Mammen Priyanka Mary1ORCID,Bashir Noman2ORCID,Kolluri Ramachandra Rao3ORCID,Lee Eun Kung4ORCID,Shenoy Prashant5ORCID

Affiliation:

1. College of Information and Computer Sciences, University of Massachusetts Amherst, India

2. College of Information and Computer Sciences, University of Massachusetts Amherst, United States of America

3. IBM Centre for Applied Research, Australia

4. IBM T. J. Watson Research Center, United States of America

5. University of Massachusetts Amherst, United States of America

Publisher

ACM

Reference19 articles.

1. Ahmed Adel and Amr El Mougy . 2022 . Cloud Computing Predictive Resource Management Framework Using Hidden Markov Model. In 2022 5th Conference on Cloud and Internet of Things (CIoT). IEEE, 205–212 . Ahmed Adel and Amr El Mougy. 2022. Cloud Computing Predictive Resource Management Framework Using Hidden Markov Model. In 2022 5th Conference on Cloud and Internet of Things (CIoT). IEEE, 205–212.

2. Tom Brown , Benjamin Mann , Nick Ryder , Melanie Subbiah , Jared  D Kaplan , Prafulla Dhariwal , Arvind Neelakantan , Pranav Shyam , Girish Sastry , Amanda Askell , Sandhini Agarwal , Ariel Herbert-Voss , Gretchen Krueger , Tom Henighan , Rewon Child , Aditya Ramesh , Daniel Ziegler , Jeffrey Wu , Clemens Winter , Chris Hesse , Mark Chen , Eric Sigler , Mateusz Litwin , Scott Gray , Benjamin Chess , Jack Clark , Christopher Berner , Sam McCandlish , Alec Radford , Ilya Sutskever , and Dario Amodei . 2020. Language Models are Few-Shot Learners . In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.). Vol. 33. Curran Associates , Inc ., 1877 –1901. https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.). Vol. 33. Curran Associates, Inc., 1877–1901. https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

3. Daniel Crankshaw , Xin Wang , Giulio Zhou , Michael  J Franklin , Joseph  E Gonzalez , and Ion Stoica . 2017 . Clipper: A Low-Latency Online Prediction Serving System.. In NSDI, Vol. 17. 613–627. Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J Franklin, Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System.. In NSDI, Vol. 17. 613–627.

4. Jesse Dodge , Taylor Prewitt , Remi Tachet des Combes , Erika Odmark , Roy Schwartz , Emma Strubell , Alexandra Sasha Luccioni , Noah  A. Smith , Nicole DeCario , and Will Buchanan . 2022 . Measuring the Carbon Intensity of AI in Cloud Instances. In 2022 ACM Conference on Fairness, Accountability, and Transparency ( Seoul, Republic of Korea) (FAccT ’22). Association for Computing Machinery, New York, NY, USA , 1877–1894. https://doi.org/10.1145/3531146.3533234 10.1145/3531146.3533234 Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A. Smith, Nicole DeCario, and Will Buchanan. 2022. Measuring the Carbon Intensity of AI in Cloud Instances. In 2022 ACM Conference on Fairness, Accountability, and Transparency (Seoul, Republic of Korea) (FAccT ’22). Association for Computing Machinery, New York, NY, USA, 1877–1894. https://doi.org/10.1145/3531146.3533234

5. ANDREAS: Artificial intelligence traiNing scheDuler foR accElerAted resource clusterS

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance and Energy Savings Trade-Off with Uncertainty-Aware Cloud Workload Forecasting;2023 IEEE 31st International Conference on Network Protocols (ICNP);2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3