Rethinking a heap hierarchy as a cache hierarchy: a higher-order theory of memory demand (HOTM)

Author:

Li Pengcheng1,Luo Hao1,Ding Chen1

Affiliation:

1. University of Rochester, USA

Abstract

Modern memory allocators divide the available memory between different threads and object size classes. They use many parameters that are related and mutually affecting. Existing solutions are based on heuristics which cannot serve all applications equally well. This paper presents a theory of memory demand. The theory enables the global optimization of heap parameters for an application. The paper evaluates the theory and the optimization using multi-threaded micro-benchmarks as well as real applications including Apache, Ghostscript interpreter, and a database benchmarking tool and shows that the global optimization theoretically outperforms three typical heuristics by 15% to 113%.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Reuse Interval for Optimized Web Caching: An LSTM-Based Machine Learning Approach;SC22: International Conference for High Performance Computing, Networking, Storage and Analysis;2022-11

2. Exploring GNN based program embedding technologies for binary related tasks;Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension;2022-05-16

3. Beating OPT with Statistical Clairvoyance and Variable Size Caching;Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems;2019-04-04

4. Timescale functions for parallel memory allocation;Proceedings of the 2019 ACM SIGPLAN International Symposium on Memory Management - ISMM 2019;2019

5. Prediction and bounds on shared cache demand from memory access interleaving;Proceedings of the 2018 ACM SIGPLAN International Symposium on Memory Management;2018-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3