Characterizing emerging heterogeneous memory

Author:

Shen Du1,Liu Xu1,Lin Felix Xiaozhu2

Affiliation:

1. College of William and Mary, USA

2. Purdue University, USA

Abstract

Heterogeneous memory (HM, also known as hybrid memory) has become popular in emerging parallel architectures due to its programming flexibility and energy efficiency. Unlike the traditional memory subsystem, HM consists of fast and slow components. Usually, the fast memory lacks hardware support, which puts extra burdens on programmers and compilers for explicit data placement. Thus, HM provides both opportunities and challenges with programming parallel codes. It is important to understand how to utilize HM and set expectations on the benefits of HM. Prior work principally uses simulators to study HM, which lacks the analysis on a real hardware. To address this issue, this paper experiments with a real system—the TI KeyStone II—to study HM. We make three contributions. First, we develop a set of parallel benchmarks to characterize the performance and power efficiency of HM. It is the first benchmark suite with OpenMP 4.0 features that is functional on real HM architectures. Second, we build a profiling tool to provide guidance for placing data in HM. Our tool analyzes memory access patterns and provides high-level feedback at the source-code level for optimization. Third, we apply the data placement optimization to our benchmarks and evaluate the effectiveness of HM in boosting performance and saving energy.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PatternS: An intelligent hybrid memory scheduler driven by page pattern recognition;Journal of Systems Architecture;2024-08

2. A Low-Cost and Pages-Interrelation-Aware Attention Model for Hybrid Memory Scheduling;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

3. VClinic: A Portable and Efficient Framework for Fine-Grained Value Profilers;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3