Understanding and improving JVM GC work stealing at the data center scale

Author:

Hassanein Wessam1

Affiliation:

1. Google, USA

Abstract

Garbage collection (GC) is a critical part of performance in managed run-time systems such as the OpenJDK Java Virtual Machine (JVM). With a large number of latency sensitive applications written in Java the performance of the JVM is essential. Java application servers run in data centers on a large number of multi-core servers, thus load balancing in multi-threaded GC phases is critical. Dynamic load balancing in the JVM GC is achieved through work stealing, a well known and effective method to balance tasks across threads. This paper analyzes the JVM work stealing behaviour, and introduces a novel work stealing technique that improves performance, GC CPU utilization, scalability, and reduces the cost of jobs running on Google’s data-centers. We analyze both the DaCapo benchmark suite as well as Google’s data-center jobs. Our results show that the Gmail front-end server shows a 15-20% GC CPU reduction, and a 5% CPU performance improvement. Our analysis of a sample of ~59K jobs shows that GC CPU utilization improves by 38% geomean, 12% weighted geomean. GC pause time improves by 16% geomean, 20% weighted geomean. Full GC pause time improves by 34% geomean, 12% weighted geomean.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference30 articles.

1. Arora N. S. Blumofe R. D. and Plaxton C. G. Thread scheduling for multiprogrammed multiprocessors. Theory of Computing Systems 34 2 (2001) 115-144. Arora N. S. Blumofe R. D. and Plaxton C. G. Thread scheduling for multiprogrammed multiprocessors. Theory of Computing Systems 34 2 (2001) 115-144.

2. Correct and efficient work-stealing for weak memory models

3. Scalable work stealing

4. Scheduling parallel programs by work stealing with private deques

5. Non-blocking steal-half work queues

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A holistic evaluation methodology for configuring production data centers;Concurrency and Computation: Practice and Experience;2022-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3