Towards scalable configuration testing in variable software

Author:

Rothberg Valentin1,Dietrich Christian1,Ziegler Andreas1,Lohmann Daniel1

Affiliation:

1. University of Erlangen-Nuremberg, Germany

Abstract

Testing a software product line such as Linux implies building the source with different configurations. Manual approaches to generate configurations that enable code of interest are doomed to fail due to the high amount of variation points distributed over the feature model, the build system and the source code. Research has proposed various approaches to generate covering configurations, but the algorithms show many drawbacks related to run-time, exhaustiveness and the amount of generated configurations. Hence, analyzing an entire Linux source can yield more than 30 thousand configurations and thereby exceeds the limited budget and resources for build testing. In this paper, we present an approach to fill the gap between a systematic generation of configurations and the necessity to fully build software in order to test it. By merging previously generated configurations, we reduce the number of necessary builds and enable global variability-aware testing. We reduce the problem of merging configurations to finding maximum cliques in a graph. We evaluate the approach on the Linux kernel, compare the results to common practices in industry, and show that our implementation scales even when facing graphs with millions of edges.

Funder

DFG

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference37 articles.

1. Michael Kerrisk. Kernel build/boot testing. 2012. Michael Kerrisk. Kernel build/boot testing. 2012.

2. Towards easing the diagnosis of bugs in OS code

3. WYSIWIB: A declarative approach to finding API protocols and bugs in Linux code

4. Dave Jones. Trinity: A Linux system call fuzzer. Dave Jones. Trinity: A Linux system call fuzzer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3