Thermal-aware Adaptive Platform Management for Heterogeneous Embedded Systems

Author:

Maity Srijeeta1,Ghose Anirban1,Dey Soumyajit1,Biswas Swarnendu2

Affiliation:

1. Indian Institute of Technology Kharagpur, West Bengal, India

2. Indian Institute of Technology Kanpur, Uttar Pradesh, India

Abstract

Recent trends in real-time applications have raised the demand for high-throughput embedded platforms with integrated CPU-GPU based Systems-On-Chip (SoCs). The enhanced performance of such SoCs, however, comes at the cost of increased power consumption, resulting in significant heat dissipation and high on-chip temperatures. The prolonged occurrences of high on-chip temperature can cause accelerated in-circuit ageing, which severely degrades the long-term performance and reliability of the chip. Violation of thermal constraints leads to on-board dynamic thermal management kicking-in, which may result in timing unpredictability for real-time tasks due to transient performance degradation. Recent work in adaptive software design have explored this issue from a control theoretic stand-point, striving for smooth thermal envelopes by tuning the core frequency. Existing techniques do not handle thermal violations for periodic real-time task sets in the presence of dynamic events like change of task periodicity, more so in the context of heterogeneous SoCs with integrated CPU-GPUs. This work presents an OpenCL runtime extension for thermal-aware scheduling of periodic, real-time tasks on heterogeneous multi-core platforms. Our framework mitigates dynamic thermal violations by adaptively tuning task mapping parameters, with the eventual control objective of satisfying both platform-level thermal constraints and task-level deadline constraints. We consider multiple platform-level control actions like task migration, frequency tuning and idle slot insertion as the task mapping parameters. To the best of our knowledge, this is the first work that considers such a variety of task mapping control actions in the context of heterogeneous embedded platforms. We evaluate the proposed framework on an Odroid-XU4 board using OpenCL benchmarks and demonstrate its effectiveness in reducing thermal violations.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Energy-efficient STT-MRAM-based Near Memory Computing Architecture for Embedded Systems;ACM Transactions on Embedded Computing Systems;2024-04-25

2. TMDS: Temperature-aware Makespan Minimizing DAG Scheduler for Heterogeneous Distributed Systems;ACM Transactions on Design Automation of Electronic Systems;2023-10-16

3. Hot Under the Hood: An Analysis of Ambient Temperature Impact on Heterogeneous Edge Platforms;Proceedings of the 6th International Workshop on Edge Systems, Analytics and Networking;2023-05-08

4. Reducing Peak Temperature by Redistributing Idle-Time in Modern MPSoCs;2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC);2023-05

5. Inferencing on Edge Devices: A Time- and Space-aware Co-scheduling Approach;ACM Transactions on Design Automation of Electronic Systems;2023-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3