Affiliation:
1. Shandong University, China
2. National University of Singapore, Singapore
Abstract
Presentation has been an effective method for delivering information to an audience for many years. Over the past few decades, technological advancements have revolutionized the way humans deliver presentation. Conventionally, the quality of a presentation is usually evaluated through painstaking manual analysis with experts. Although the expert feedback is effective in assisting users to improve their presentation skills, manual evaluation suffers from high cost and is often not available to most individuals. In this work, we propose a novel multi-sensor self-quantification system for presentations, which is designed based on a new proposed assessment rubric. We present our analytics model with conventional ambient sensors (i.e., static cameras and Kinect sensor) and the emerging wearable egocentric sensors (i.e., Google Glass). In addition, we performed a cross-correlation analysis of speaker’s vocal behavior and body language. The proposed framework is evaluated on a new presentation dataset, namely, NUS Multi-Sensor Presentation dataset, which consists of 51 presentations covering a diverse range of topics. To validate the efficacy of the proposed system, we have conducted a series of user studies with the speakers and an interview with an English communication expert, which reveals positive and promising feedback.
Funder
National Natural Science Foundation of China
National Research Foundation Singapore
undamental Research Funds of Shandong University
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献