FedSuper: A Byzantine-Robust Federated Learning Under Supervision

Author:

Zhao Ping1ORCID,Jiang Jin1ORCID,Zhang Guanglin1ORCID

Affiliation:

1. College of Information Science and Technology, Donghua University, China

Abstract

Federated Learning (FL) is a machine learning setting where multiple worker devices collaboratively train a model under the orchestration of a central server, while keeping the training data local. However, owing to the lack of supervision on worker devices, FL is vulnerable to Byzantine attacks where the worker devices controlled by an adversary arbitrarily generate poisoned local models and send to FL server, ultimately degrading the utility (e.g., model accuracy) of the global model. Most of existing Byzantine-robust algorithms, however, cannot well react to the threatening Byzantine attacks when the ratio of compromised worker devices (i.e., Byzantine ratio) is over 0.5 and worker devices’ local training datasets are not independent and identically distributed (non-IID). We propose a novel Byzantine-robust Fed erated Learning under Super vision (FedSuper), which can maintain robustness against Byzantine attacks even in the threatening scenario with a very high Byzantine ratio (0.9 in our experiments) and the largest level of non-IID data (1.0 in our experiments) when the state-of-the-art Byzantine attacks are conducted. The main idea of FedSuper is that the FL server supervises worker devices via injecting a shadow dataset into their local training processes. Moreover, according to the local models’ accuracies or losses on the shadow dataset, we design a Local Model Filter to remove poisoned local models and output an optimal global model. Extensive experimental results on three real-world datasets demonstrate the effectiveness and the superior performance of FedSuper, compared to five latest Byzantine-robust FL algorithms and two baselines, in defending against two state-of-the-art Byzantine attacks with high Byzantine ratios and high levels of non-IID data.

Funder

National Natural Science Foundation of China

Fundamental Research Funds

Central Universities

Shanghai Sailing Program

Open Foundation of State key Laboratory of Networking and Switching Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference55 articles.

1. R LEAF a benchmark for federated settings

2. Federated learning: Collaborative machine learning without centralized training data. Retrieved October 03 2021 from https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

3. Utilization of FATE in risk management of credit in small and micro enterprises. Retrieved October 03 2021 from https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/

4. Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. 2018. Byzantine stochastic gradient descent. In Proc. of Conference on Neural Information Processing Systems.

5. Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020. How to backdoor federated learning. In Proc. of Artificial Intelligence and Statistics (AISTATS’20).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3