Motion from Shape Change

Author:

Gross Oliver1ORCID,Soliman Yousuf2ORCID,Padilla Marcel1ORCID,Knöppel Felix1ORCID,Pinkall Ulrich1ORCID,Schröder Peter2ORCID

Affiliation:

1. TU Berlin, Berlin, Germany

2. California Institute of Technology, Pasadena, United States of America

Abstract

We consider motion effected by shape change. Such motions are ubiquitous in nature and the human made environment, ranging from single cells to platform divers and jellyfish. The shapes may be immersed in various media ranging from the very viscous to air and nearly inviscid fluids. In the absence of external forces these settings are characterized by constant momentum. We exploit this in an algorithm which takes a sequence of changing shapes, say, as modeled by an animator, as input and produces corresponding motion in world coordinates. Our method is based on the geometry of shape change and an appropriate variational principle. The corresponding Euler-Lagrange equations are first order ODEs in the unknown rotations and translations and the resulting time stepping algorithm applies to all these settings without modification as we demonstrate with a broad set of examples.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference46 articles.

1. Alexander M. Bronstein , Michael M. Bronstein , and Ron Kimmel . 2008. Numerical Geometry of Non-rigid Shapes . Springer . Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2008. Numerical Geometry of Non-rigid Shapes. Springer.

2. Surface-only liquids

3. Daniel Daye. 2019. Rigged and Animated Scan of Timber Rattlesnake. https://sketchfab.com/. CC Attribution-NonCommercial. Daniel Daye. 2019. Rigged and Animated Scan of Timber Rattlesnake. https://sketchfab.com/. CC Attribution-NonCommercial.

4. J. Elgeti R. G. Winkler and G. Gompper. 2015. Physics of Microswimmers---Single Particle Motion and Collective Behavior: a Review. Rep. Prog. Phys. 78 (2015). J. Elgeti R. G. Winkler and G. Gompper. 2015. Physics of Microswimmers---Single Particle Motion and Collective Behavior: a Review. Rep. Prog. Phys. 78 (2015).

5. Leonhard Euler. 1744. Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes. Bousquet Lausanne & Geneva. English translation at WikiSource. Leonhard Euler. 1744. Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes. Bousquet Lausanne & Geneva. English translation at WikiSource.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3