Quantitative separation logic: a logic for reasoning about probabilistic pointer programs

Author:

Batz Kevin1,Kaminski Benjamin Lucien1,Katoen Joost-Pieter1,Matheja Christoph1,Noll Thomas1

Affiliation:

1. RWTH Aachen University, Germany

Abstract

We present quantitative separation logic (QSL). In contrast to classical separation logic, QSL employs quantities which evaluate to real numbers instead of predicates which evaluate to Boolean values. The connectives of classical separation logic, separating conjunction and separating implication, are lifted from predicates to quantities. This extension is conservative: Both connectives are backward compatible to their classical analogs and obey the same laws, e.g. modus ponens, adjointness, etc. Furthermore, we develop a weakest precondition calculus for quantitative reasoning about probabilistic pointer programs in QSL. This calculus is a conservative extension of both Ishtiaq’s, O’Hearn’s and Reynolds’ separation logic for heap-manipulating programs and Kozen’s / McIver and Morgan’s weakest preexpectations for probabilistic programs. Soundness is proven with respect to an operational semantics based on Markov decision processes. Our calculus preserves O’Hearn’s frame rule , which enables local reasoning. We demonstrate that our calculus enables reasoning about quantities such as the probability of terminating with an empty heap, the probability of reaching a certain array permutation, or the expected length of a list.

Funder

Deutsche Forschungsgemeinschaft

DFG

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs;Proceedings of the ACM on Programming Languages;2024-08-15

2. Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects;Proceedings of the ACM on Programming Languages;2024-04-29

3. Programmatic Strategy Synthesis: Resolving Nondeterminism in Probabilistic Programs;Proceedings of the ACM on Programming Languages;2024-01-05

4. Asynchronous Probabilistic Couplings in Higher-Order Separation Logic;Proceedings of the ACM on Programming Languages;2024-01-05

5. Local Reasoning About Probabilistic Behaviour for Classical–Quantum Programs;Lecture Notes in Computer Science;2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3