Verified Extraction from Coq to OCaml

Author:

Forster Yannick1ORCID,Sozeau Matthieu1ORCID,Tabareau Nicolas1ORCID

Affiliation:

1. Inria, Rennes, France

Abstract

One of the central claims of fame of the Coq proof assistant is extraction, i.e. the ability to obtain efficient programs in industrial programming languages such as OCaml, Haskell, or Scheme from programs written in Coq’s expressive dependent type theory. Extraction is of great practical usefulness, used crucially e.g. in the CompCert project. However, for such executables obtained by extraction, the extraction process is part of the trusted code base (TCB), as are Coq’s kernel and the compiler used to compile the extracted code. The extraction process contains intricate semantic transformation of programs that rely on subtle operational features of both the source and target language. Its code has also evolved since the last theoretical exposition in the seminal PhD thesis of Pierre Letouzey. Furthermore, while the exact correctness statements for the execution of extracted code are described clearly in academic literature, the interoperability with unverified code has never been investigated formally, and yet is used in virtually every project relying on extraction. In this paper, we describe the development of a novel extraction pipeline from Coq to OCaml, implemented and verified in Coq itself, with a clear correctness theorem and guarantees for safe interoperability. We build our work on the MetaCoq project, which aims at decreasing the TCB of Coq’s kernel by re-implementing it in Coq itself and proving it correct w.r.t. a formal specification of Coq’s type theory in Coq. Since OCaml does not have a formal specification, we make use of the project specifying the semantics of the intermediate language of the OCaml compiler. Our work fills some gaps in the literature and highlights important differences between the operational semantics of Coq programs and their extraction. In particular, we focus on the guarantees that can be provided for interoperability with unverified code, and prove that extracted programs of first-order data type are correct and can safely interoperate, whereas for higher-order programs already simple interoperations can lead to incorrect behaviour and even outright segfaults.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Association for Computing Machinery (ACM)

Reference38 articles.

1. Proof-Producing Synthesis of CakeML from Monadic HOL Functions

2. Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy Pollack, Olivier Savary Belanger, Matthieu Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler for Coq. In CoqPL. Paris, France. http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq

3. Danil Annenkov, Mikkel Milo, and Bas Spitters. 2021. Code Extraction from Coq to ML-like languages. In ML Family Workshop 2021. https://github.com/AU-COBRA/ConCert/blob/master/papers/ML-family.pdf

4. ConCert: a smart contract certification framework in Coq

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3