Impact of Design Decisions in Scanpath Modeling

Author:

Emami Parvin1ORCID,Jiang Yue2ORCID,Guo Zixin2ORCID,Leiva Luis A.1ORCID

Affiliation:

1. University of Luxembourg, Esch-sur-Alzette, Luxembourg

2. Aalto University, Espoo, Finland

Abstract

Modeling visual saliency in graphical user interfaces (GUIs) allows to understand how people perceive GUI designs and what elements attract their attention. One aspect that is often overlooked is the fact that computational models depend on a series of design parameters that are not straightforward to decide. We systematically analyze how different design parameters affect scanpath evaluation metrics using a state-of-the-art computational model (DeepGaze++). We particularly focus on three design parameters: input image size, inhibition-of-return decay, and masking radius. We show that even small variations of these design parameters have a noticeable impact on standard evaluation metrics such as DTW or Eyenalysis. These effects also occur in other scanpath models, such as UMSS and ScanGAN, and in other datasets such as MASSVIS. Taken together, our results put forward the impact of design decisions for predicting users' viewing behavior on GUIs.

Funder

Horizon 2020 FET program

Horizon Europe

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. Nicola C Anderson, Fraser Anderson, Alan Kingstone, and Walter F Bischof. 2015. A comparison of scanpath comparison methods. Behavior research methods , Vol. 47 (2015), 1377--1392.

2. Marc Assens, Xavier Giro-i Nieto, Kevin McGuinness, and Noel E O'Connor. 2018. PathGAN: Visual scanpath prediction with generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops. 0--0.

3. Human scanpath prediction based on deep convolutional saccadic model

4. Beyond Memorability: Visualization Recognition and Recall

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Good GUIs, Bad GUIs: Affective Evaluation of Graphical User Interfaces;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3