Adaptive Discretization for Episodic Reinforcement Learning in Metric Spaces

Author:

Sinclair Sean R.1,Banerjee Siddhartha1,Yu Christina Lee1

Affiliation:

1. Cornell University, Ithaca, NY, USA

Abstract

We present an efficient algorithm for model-free episodic reinforcement learning on large (potentially continuous) state-action spaces. Our algorithm is based on a novel Q-learning policy with adaptive data-driven discretization. The central idea is to maintain a finer partition of the state-action space in regions which are frequently visited in historical trajectories, and have higher payoff estimates. We demonstrate how our adaptive partitions take advantage of the shape of the optimal Q-function and the joint space, without sacrificing the worst-case performance. In particular, we recover the regret guarantees of prior algorithms for continuous state-action spaces, which additionally require either an optimal discretization as input, and/or access to a simulation oracle. Moreover, experiments demonstrate how our algorithm automatically adapts to the underlying structure of the problem, resulting in much better performance compared both to heuristics and Q-learning with uniform discretization.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference32 articles.

1. Luce Brotcorne Gilbert Laporte and Frederic Semet. 2003. Ambulance location and relocation models. European journal of operational research Vol. 147 3 (2003) 451--463. Luce Brotcorne Gilbert Laporte and Frederic Semet. 2003. Ambulance location and relocation models. European journal of operational research Vol. 147 3 (2003) 451--463.

2. Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems

3. Sébastien Bubeck Gilles Stoltz Csaba Szepesvári and Rémi Munos. 2009. Online optimization in X-armed bandits. In Advances in Neural Information Processing Systems. 201--208. Sébastien Bubeck Gilles Stoltz Csaba Szepesvári and Rémi Munos. 2009. Online optimization in X-armed bandits. In Advances in Neural Information Processing Systems. 201--208.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3