1. Representing Musical Genre: A State of the Art
2. Jean-Pierre Briot , Gaëtan Hadjeres , and François-David Pachet . 2020. Deep Learning Techniques for Music Generation . Springer International Publishing , Cham . https://doi.org/10.1007/978-3-319-70163-9_1 Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. 2020. Deep Learning Techniques for Music Generation. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-70163-9_1
3. Filippo Carnovalini and Antonio Rodà . 2020. Computational Creativity and Music Generation Systems: An Introduction to the State of the Art. Frontiers in Artificial Intelligence 3 ( 2020 ). https://doi.org/10.3389/frai.2020.00014 Filippo Carnovalini and Antonio Rodà. 2020. Computational Creativity and Music Generation Systems: An Introduction to the State of the Art. Frontiers in Artificial Intelligence 3 (2020). https://doi.org/10.3389/frai.2020.00014
4. Prafulla Dhariwal , Heewoo Jun , Christine Payne , Jong Wook Kim , Alec Radford , and Ilya Sutskever . 2020 . Jukebox: A Generative Model for Music. arXiv preprint arXiv:2005.00341(2020). https://doi.org/10.48550/ARXIV.2005.00341 Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever. 2020. Jukebox: A Generative Model for Music. arXiv preprint arXiv:2005.00341(2020). https://doi.org/10.48550/ARXIV.2005.00341
5. Monica Dinculescu , Jesse Engel , and Adam Roberts . 2019 . MidiMe: Personalizing a MusicVAE model with user data . In Workshop on Machine Learning for Creativity and Design, NeurIPS. Monica Dinculescu, Jesse Engel, and Adam Roberts. 2019. MidiMe: Personalizing a MusicVAE model with user data. In Workshop on Machine Learning for Creativity and Design, NeurIPS.