Dynamic Topic Modeling of Covid-19 Vaccine-Related Tweets

Author:

Sharma Anubhav1,Susan Seba1,Bansal Anmol1,Choudhry Arjun1

Affiliation:

1. Department of Information Technology, Delhi Technological University, India

Publisher

ACM

Reference21 articles.

1. He F. Deng Y. and Li W. 2020. Coronavirus disease 2019: What we know?. Journal of medical virology  92(7) pp.719-725. He F. Deng Y. and Li W. 2020. Coronavirus disease 2019: What we know?. Journal of medical virology  92(7) pp.719-725.

2. Ferrara E. 2020. What types of COVID-19 conspiracies are populated by Twitter bots?. arXiv preprint arXiv:2004.09531. Ferrara E. 2020. What types of COVID-19 conspiracies are populated by Twitter bots?. arXiv preprint arXiv:2004.09531.

3. Hussain A. Tahir A. Hussain Z. Sheikh Z. Gogate M. Dashtipour K. Ali A. and Sheikh A. 2021. Artificial intelligence–enabled analysis of public attitudes on facebook and twitter toward covid-19 vaccines in the united kingdom and the united states: Observational study. Journal of medical Internet research  23(4) p.e26627. Hussain A. Tahir A. Hussain Z. Sheikh Z. Gogate M. Dashtipour K. Ali A. and Sheikh A. 2021. Artificial intelligence–enabled analysis of public attitudes on facebook and twitter toward covid-19 vaccines in the united kingdom and the united states: Observational study. Journal of medical Internet research  23(4) p.e26627.

4. Melton C.A. Olusanya O.A. Ammar N. and Shaban-Nejad A. 2021. Public sentiment analysis and topic modeling regarding COVID-19 vaccines on the Reddit social media platform: A call to action for strengthening vaccine confidence. Journal of Infection and Public Health  14(10) pp.1505-1512. Melton C.A. Olusanya O.A. Ammar N. and Shaban-Nejad A. 2021. Public sentiment analysis and topic modeling regarding COVID-19 vaccines on the Reddit social media platform: A call to action for strengthening vaccine confidence. Journal of Infection and Public Health  14(10) pp.1505-1512.

5. Sha H. Hasan M.A. Mohler G. and Brantingham P.J. 2020. Dynamic topic modeling of the COVID-19 Twitter narrative among US governors and cabinet executives. arXiv preprint arXiv:2004.11692. Sha H. Hasan M.A. Mohler G. and Brantingham P.J. 2020. Dynamic topic modeling of the COVID-19 Twitter narrative among US governors and cabinet executives. arXiv preprint arXiv:2004.11692.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Topic Modeling to Mine Themes and Evolution during the Initial COVID-19 Vaccine Rollout;Health Behavior and Policy Review;2023-06-01

2. Resume Classification using Elite Bag-of-Words Approach;2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT);2023-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3