Discovering Graph Functional Dependencies

Author:

Fan Wenfei1,Hu Chunming2,Liu Xueli3,Lu Ping4

Affiliation:

1. University of Edinburgh, Shenzhen Institute of Computing Sciences, and BDBC, Beihang Univ., Beijing, China

2. Beihang University, Beijing, China

3. College of Intelligence and Computing, Tianjin University, Tianjin, China

4. BDBC, Beihang University, Beijing, China

Abstract

This article studies discovery of Graph Functional Dependencies (GFDs), a class of functional dependencies defined on graphs. We investigate the fixed-parameter tractability of three fundamental problems related to GFD discovery. We show that the implication and satisfiability problems are fixed-parameter tractable, but the validation problem is co-W[1]-hard in general. We introduce notions of reduced GFDs and their topological support, and formalize the discovery problem for GFDs. We develop algorithms for discovering GFDs and computing their covers. Moreover, we show that GFD discovery is feasible over large-scale graphs, by providing parallel scalable algorithms that guarantee to reduce running time when more processors are used. Using real-life and synthetic data, we experimentally verify the effectiveness and scalability of the algorithms.

Funder

Shen- zhen Institute of Computing Sciences

Beijing Advanced Innovation Center for Big Data and Brain Computing

EPSRC

NSFC

Royal Society Wolfson Research Merit Award

ERC

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference59 articles.

1. IMDB. 2008. IMDB. Retrieved from http://www.imdb.com/interfaces. IMDB. 2008. IMDB. Retrieved from http://www.imdb.com/interfaces.

2. DBpedia. 2015. DBpedia. Retrieved from http://wiki.dbpedia.org/Datasets. DBpedia. 2015. DBpedia. Retrieved from http://wiki.dbpedia.org/Datasets.

3. The load rebalancing problem

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3