Incremental Updates of Generalized Hypertree Decompositions

Author:

Gottlob Georg1ORCID,Lanzinger Matthias1ORCID,Longo Davide Mario2ORCID,Okulmus Cem2ORCID

Affiliation:

1. University of Oxford, Oxford, UK

2. TU Wien, Favoritenstraße, Austria

Abstract

Structural decomposition methods, such as generalized hypertree decompositions, have been successfully used for solving constraint satisfaction problems (CSPs). As decompositions can be reused to solve CSPs with the same constraint scopes, investing resources in computing good decompositions is beneficial, even though the computation itself is hard. Unfortunately, current methods need to compute a completely new decomposition, even if the scopes change only slightly. In this article, we make the first steps toward solving the problem of updating the decomposition of a CSP P so that it becomes a valid decomposition of a new CSP P ' produced by some modification of P . Even though the problem is hard in theory, we propose and implement a framework for effectively updating generalized hypertree decompositions. The experimental evaluation of our algorithm strongly suggests practical applicability.

Funder

Austrian Science Fund

Georg Gottlob is a Royal Society Research Professor

Royal Society for the present work in the context of the project

FWF

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference28 articles.

1. Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016. EmptyHeaded: A relational engine for graph processing. In Proceedings of the International Conference on Management of Data (SIGMOD’16). 431–446.

2. A compressed Generalized Hypertree Decomposition-based solving technique for non-binary Constraint Satisfaction Problems

3. Design and Implementation of the LogicBlox System

4. Semantic Width and the Fixed-Parameter Tractability of Constraint Satisfaction Problems

5. Cmpositional modeling: finding the right model for the job

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3