Footprint

Author:

Fu Binzhang1,Kim John2

Affiliation:

1. SKL Computer Architecture ICT, CAS, Huawei Technologies Co., Ltd

2. School of Computing, KAIST, Hewlett Packard Labs

Abstract

Routing algorithms can improve network performance by maximizing routing adaptiveness but can be problematic in the presence of endpoint congestion. Tree-saturation is a well-known behavior caused by endpoint congestion. Adaptive routing can, however, spread the congestion and result in thick branches of the congestion tree -- creating Head-of-Line (HoL) blocking and degrading performance. In this work, we identify how ignoring virtual channels (VCs) and their occupancy during adaptive routing results in congestion trees with thick branches as congestion is spread to all VCs. To address this limitation, we propose Footprint routing algorithm -- a new adaptive routing algorithm that minimizes the size of the congestion tree, both in terms of the number of nodes in the congestion tree as well as branch thickness. Footprint achieves this by regulating adaptiveness by requiring packets to follow the path of prior packets to the same destination if the network is congested instead of forking a new path or VC. Thus, the congestion tree is dynamically kept as slim as possible and reduces HoL blocking or congestion spreading while maintaining high adaptivity and maximizing VC buffer utilization. We evaluate the proposed Footprint routing algorithm against other adaptive routing algorithms and our simulation results show that the network saturation throughput can be improved by up to 43% (58%) compared with the fully adaptive routing (partially adaptive routing) algorithms.

Publisher

Association for Computing Machinery (ACM)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of machine learning for Network-on-Chips;Journal of Parallel and Distributed Computing;2024-04

2. Power: Multi-Capatibility Adaptive Routing for Network-an-Chips;2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE);2023-02-24

3. Transit ring: bubble flow control for eliminating inter-ring communication congestion;The Journal of Supercomputing;2022-07-21

4. CACBR: Congestion Aware Cluster Buffer base routing algorithm with minimal cost on NOC;CCF Transactions on High Performance Computing;2020-03-18

5. HARE: History-Aware Adaptive Routing Algorithm for Endpoint Congestion in Networks-on-Chip;International Journal of Parallel Programming;2018-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3