Accelerating GPU Hardware Transactional Memory with Snapshot Isolation

Author:

Chen Sui1,Peng Lu1,Irving Samuel1

Affiliation:

1. Division of Electrical & Computer Engineering, Louisiana State University

Abstract

Snapshot Isolation (SI) is an established model in the database community, which permits write-read conflicts to pass and aborts transactions only on write-write conflicts. With the Write Skew anomaly correctly eliminated, SI can reduce the occurrence of aborts, save the work done by transactions, and greatly benefit long transactions involving complex data structures. GPUs are evolving towards a general-purpose computing device with growing support for irregular workloads, including transactional memory. The usage of snapshot isolation on transactional memory has proven to be greatly beneficial for performance. In this paper, we propose a multi-versioned memory subsystem for hardware-based transactional memory on the GPU, with a method for eliminating the Write Skew anomaly on the fly, and finally incorporate Snapshot Isolation with this system. The results show that snapshot isolation can effectively boost the performance of dynamically sized data structures such as linked lists, binary trees and red-black trees, sometimes by as much as 4.5x, which results in improved overall performance of benchmarks utilizing these data structures.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CSMV: A highly scalable multi-versioned software transactional memory for GPUs;Journal of Parallel and Distributed Computing;2023-10

2. CSMV: A Highly Scalable Multi-Versioned Software Transactional Memory for GPUs;2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2022-05

3. CUDA-DTM: Distributed Transactional Memory for GPU Clusters;Networked Systems;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3