DICE

Author:

Young Vinson1,Nair Prashant J.1,Qureshi Moinuddin K.1

Affiliation:

1. School of Electrical and Computer Engineering, Georgia Institute of Technology

Abstract

This paper investigates compression for DRAM caches. As the capacity of DRAM cache is typically large, prior techniques on cache compression, which solely focus on improving cache capacity, provide only a marginal benefit. We show that more performance benefit can be obtained if the compression of the DRAM cache is tailored to provide higher bandwidth. If a DRAM cache can provide two compressed lines in a single access, and both lines are useful, the effective bandwidth of the DRAM cache would double. Unfortunately, it is not straight-forward to compress DRAM caches for bandwidth. The typically used Traditional Set Indexing (TSI) maps consecutive lines to consecutive sets, so the multiple compressed lines obtained from the set are from spatially distant locations and unlikely to be used within a short period of each other. We can change the indexing of the cache to place consecutive lines in the same set to improve bandwidth; however, when the data is incompressible, such spatial indexing reduces effective capacity and causes significant slowdown. Ideally, we would like to have spatial indexing when the data is compressible and TSI otherwise. To this end, we propose Dynamic-Indexing Cache comprEssion (DICE), a dynamic design that can adapt between spatial indexing and TSI, depending on the compressibility of the data. We also propose low-cost Cache Index Predictors (CIP) that can accurately predict the cache indexing scheme on access in order to avoid probing both indices for retrieving a given cache line. Our studies with a 1GB DRAM cache, on a wide range of workloads (including SPEC and Graph), show that DICE improves performance by 19.0% and reduces energy-delay-product by 36% on average. DICE is within 3% of a design that has double the capacity and double the bandwidth. DICE incurs a storage overhead of less than 1KB and does not rely on any OS support.

Funder

National Science Foundation

Semiconductor Research Corporation

Publisher

Association for Computing Machinery (ACM)

Reference40 articles.

1. Cache performance of operating system and multiprogramming workloads

2. Column-associative caches

3. Alaa R Alameldeen and David A Wood. 2004. Frequent pattern compression: A significance-based compression scheme for L2 caches. Dept. Comp. Scie. Univ. Wisconsin-Madison Tech. Rep 1500 (2004). Alaa R Alameldeen and David A Wood. 2004. Frequent pattern compression: A significance-based compression scheme for L2 caches. Dept. Comp. Scie. Univ. Wisconsin-Madison Tech. Rep 1500 (2004).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Safecracker: Leaking Secrets through Compressed Caches;Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems;2020-03-09

2. Alleria;ACM Transactions on Embedded Computing Systems;2019-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3