Bespoke Processors for Applications with Ultra-low Area and Power Constraints

Author:

Cherupalli Hari1,Duwe Henry2,Ye Weidong2,Kumar Rakesh2,Sartori John1

Affiliation:

1. University of Minnesota

2. University of Illinois

Abstract

A large number of emerging applications such as implantables, wearables, printed electronics, and IoT have ultra-low area and power constraints. These applications rely on ultra-low-power general purpose microcontrollers and microprocessors, making them the most abundant type of processor produced and used today. While general purpose processors have several advantages, such as amortized development cost across many applications, they are significantly over-provisioned for many area- and power-constrained systems, which tend to run only one or a small number of applications over their lifetime. In this paper, we make a case for bespoke processor design, an automated approach that tailors a general purpose processor IP to a target application by removing all gates from the design that can never be used by the application. Since removed gates are never used by an application, bespoke processors can achieve significantly lower area and power than their general purpose counterparts without any performance degradation. Also, gate removal can expose additional timing slack that can be exploited to increase area and power savings or performance of a bespoke design. Bespoke processor design reduces area and power by 62% and 50%, on average, while exploiting exposed timing slack improves average power savings to 65%.

Publisher

Association for Computing Machinery (ACM)

Reference73 articles.

1. 43oh. 2012. Products with an MSP430. http://43oh.com/2012/03/winner-products-using-the-msp430/. (2012). 43oh. 2012. Products with an MSP430. http://43oh.com/2012/03/winner-products-using-the-msp430/. (2012).

2. An effective power mode transition technique in MTCMOS circuits

3. Dynamic and leakage power reduction in MTCMOS circuits using an automated efficient gate clustering technique

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware–Software Co-design for Ultra-Resource-Constrained Embedded Machine Learning Inference: A Printed Electronics Use Case;Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing;2023-10-10

2. References;Microprocessor 3;2020-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3